FACULTY OF ENGINEEERING

B.E. II - Semester (AICTE) (Main & Backlog) New) Examination, September/ October - 2022

Subject: MATHEMATICS-II

Time: 3 Hours Max. Marks: 70

Note: (i) First question is compulsory and answer any four questions from the remaining six questions. Each Questions carries 14 Marks.

- (ii) Answer to each question must be written at one place only and in the same order as they occur in the question paper.
- (iii) Missing data, if any, may be suitably assumed.
- 1. (a) If λ is an eigenvalue of a non-singular matrix A, show that $\frac{|A|}{\lambda}$ is an eigenvalue of Adj A.
 - (b) Obtain the general solution of the differential equation $y = xy + e^{-y^2}$.
 - (c) Find the second order differential equation for which (e), are solutions.
 - (d) Prove that erf(x) + erfc(x) = 1.
 - 1 (e) Find $L\{(\cos t \sin t)^2\}$.
 - (f) Find the matrix of the quadratic form $Q = 2(x^2 + xy + y^2)$
 - (g) Find a particular integral of $y + 2y + y = \sin x$.
- 2. (a) Show that the system of equations x-3y-8z+10=0, 3x+y-4z=0, 2x+5y+6z-13=0 is consistent and solve the same
 - (b) Verify Cayley-Hamilton theorem for $A = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.
- 3. (a) Find the general solution of $(x^3 + y^3) dx xy^2 dy = 0$.
 - (b) Solve the differential equation $xy(1+xy^2)\frac{dy}{dx}=1$.

4. (a) Solve
$$\frac{d^3y}{dx^3} - y = (e^x + e^{-x})^2$$
.

(b) Solve
$$x^2y'' - 2xy' + 2y = \frac{1}{x}$$
.

- 5. (a) Prove that $\beta(m,n) = \beta(n,m)$ and $\beta(m+1,n) + \beta(n+1,m) = \beta(m,n)$.
 - (b) Find the power series solution of the differential equation $(1-x^2)y^2 + 2xy' + 2y = 0$ about the origin.
- 6. (a) Evaluate $\int_{0}^{\infty} t^{3}e^{-t} \sin t \, dt$ using Laplace transform.

(b) Apply convolution theorem to find
$$L^{-1}\left\{\frac{1}{s\left(s^2-1\right)}\right\}$$

7. (a) Define rank of a matrix. Find all values of k such that the rank of the matrix

$$A = \begin{pmatrix} k & -1 & 0 & 0 \\ 0 & k & -1 & 0 \\ 0 & 0 & k & -1 \\ -6 & 11 & -6 & 1 \end{pmatrix}$$
 is equal to 3.

(b) Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is a parameter.